
Clinton F. Lane*
Northern Arizona University
Department of Chemistry
PO Box 5698
Flagstaff, AZ 86011-5698
* Deceased, May 19, 2007
(Report Prepared by K. C. Ott, Los Alamos National Laboratory)

DOE Technology Development Manager: Grace Ordaz
Phone: (202) 586-8350; Fax: (202) 586-9811
E-mail: Grace.Ordaz@ee.doe.gov

DOE Project Officer: Jim Alkire
Phone: (503) 275-4795; Fax: (503) 275-4753
E-mail: James.Alkire@go.doe.gov

Contract Number: DE-FC36-05GO15060
Project Start Date: March 1, 2005
Project End Date: October 31, 2009

Objectives

- Provide guidance for safe handling of amine-borane compounds throughout the Chemical Hydrogen Storage Center of Excellence (CHSCoE).
- Evaluate hydrogen on-board generation and off-board regeneration capability and capacity of N-substituted amine-borane compounds to determine if a laboratory scale system can be developed that safely meets the DOE 2010 target of 6 wt% hydrogen.

Technical Barriers

This project addresses the following technical barriers from the Hydrogen Storage section of the Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan:

(B) Weight and Volume
(C) Efficiency
(R) Regeneration Processes

Technical Targets

- Safety Analysis of Storage Materials
- DOE 2010 target of 6 wt% Hydrogen Release

Accomplishments

- Various processes were evaluated for the laboratory preparation of ammonia-borane (AB). Boranetetrahydrofurane (THF) plus ammonia gave the best yield and purity.
- Various processes were evaluated for the laboratory preparation of methylamine-borane (MeAB). Borane-THF plus methylvamine gave the best yield and purity.
- As a first attempt to produce a “liquid fuel,” melting points were measured for nine AB/MeAB mixtures over the range: (90-10%)AB/(10-90%)MeAB. The 30-40% AB mixtures had the lowest melting point of 35-37°C.
- Co-synthesis of a 35% AB/65% MeAB mixture gave an oil product at 30°C, a near “liquid fuel,” which crystallized at 25°C.
- AB and MeAB samples were provided to the University of Washington and Pacific Northwest National Laboratory (PNNL) partners in the CHSCoE. Additional studies on the thermal and catalytic release of hydrogen from these compounds or their mixtures were performed at PNNL.

Introduction

To enable chemical hydrogen storage using amine-boranes, their safety, cost, synthesis efficiency, and ability of to meet DOE technical targets must be evaluated. Specifically, improved processes for low cost and high yield preparation of ammonia borane and N-substituted amine borane compounds are required, as are the parameters for the safe handling and transportation of these compounds and mixtures. Liquid fuel formulations are also desired to enable simplified hydrogen release and off-board regeneration processes.

Approach

Chemical synthesis techniques and our knowledge of amine-borane chemistry were applied to evaluate the most efficient syntheses of ammonia borane and N-substituted amine boranes. Reaction byproducts and their influence on fuel properties were determined. Using kinetics analysis of the thermal decomposition of the products at various times and temperatures, an evaluation of the safe handling parameters of this class of compounds was performed. Materials prepared in-house were compared with those available from
commercial vendors. Blending of liquid N-substituted amine boranes with solid ammonia borane was performed to search for low-melting mixtures that may be suitable as liquid fuel formulations. In addition, co-synthesis of promising compositions was carried out to evaluate co-synthesis strategies and the physical properties of blended vs. co-synthesized materials. Promising materials were supplied to partners within the CHSCoE for further evaluation of thermal, chemical, or catalytic activation of hydrogen release from these compounds.

Results

Synthesis of Ammonia Borane (AB): Several synthetic routes were surveyed to assess the chemical yield and purity of the resulting AB. Salt displacement reactions and borane-donor exchange reactions with ammonia were carried out and the products analyzed.

Salt displacement reactions to prepare ammonia borane (AB):

\[\text{NaBH}_4 + \text{NH}_4X \rightarrow \text{H}_2\text{BH}_3 + \text{NaX} + \text{H}_2 \]

Table 1 outlines the results of salt displacement reactions, where \(X = \) carbonate, bicarbonate, formate, acetate, and the halides chloride, bromide, and fluoride. The most efficient salt displacement reactions that also yielded the most pure product as determined by melting point and B-11 nuclear magnetic resonance (NMR).

<table>
<thead>
<tr>
<th>Ammonium Salt</th>
<th>Solvent & conditions</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\text{NH}_4)_2\text{CO}_3)</td>
<td>THF, Room temp then heat</td>
<td>70% yield, mp 115 -120°C, clean NMR</td>
</tr>
<tr>
<td>((\text{NH}_4)_2\text{HCO}_3)</td>
<td>THF, Room temp then heat</td>
<td>64% yield, mp 120 -125°C, clean NMR</td>
</tr>
<tr>
<td>(\text{NH}_4\text{OCHO})</td>
<td>THF, Room temp then heat</td>
<td>60% yield, mp 100 -105°C, impurities in NMR</td>
</tr>
<tr>
<td>(\text{NH}_4\text{OAc})</td>
<td>THF, Room temp then heat</td>
<td>70% crude yield, very impure</td>
</tr>
<tr>
<td>(\text{NH}_4\text{Br})</td>
<td>THF, Room temp then heat</td>
<td>31% yield, clean NMR</td>
</tr>
<tr>
<td>(\text{NH}_4\text{Cl})</td>
<td>THF plus additive, Room temp then heat</td>
<td>45% yield, clean NMR</td>
</tr>
<tr>
<td>(\text{NH}_4\text{F})</td>
<td>THF plus additive, Room temp then heat</td>
<td>4% yield</td>
</tr>
</tbody>
</table>

TABLE 1. Survey of Salt Displacement Reactions for the Preparation of Ammonia Borane (AB)

\[\text{BH}_3\text{-THF} + \text{MeNH}_2 \rightarrow \text{MeNH}_2\text{BH}_3 + \text{THF} \]

Survey of Donor Exchange with Ammonia for the Preparation of AB

<table>
<thead>
<tr>
<th>Borane complex</th>
<th>Solvent & conditions</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{BH}_3\text{-THF})</td>
<td>THF, (-78^\circ \text{C}) then room temp</td>
<td>68% yield, mp 120 -125°C, clean NMR</td>
</tr>
<tr>
<td>(\text{BH}_2\text{SMe}_2)</td>
<td>THF, -20°C then room temp</td>
<td>62% crude yield, strong sulfur odor</td>
</tr>
</tbody>
</table>

Synthesis of methylamine borane (MeAB):

Survey of Donor Exchange with Methylamine for the Preparation of MeAB

Reaction of the THF adduct of borane with methylamine resulted from the reaction of sodium borohydride with ammonium carbonate or bicarbonate. Other salts provided for poor yield and/or low purity.

Borane donor exchange syntheses provided better purity and yields as compared to the salt displacement reactions.

\[\text{BH}_3\text{ donor} + \text{NH}_3 \rightarrow \text{NH}_2\text{BH}_3 + \text{donor} \]

Table 2 summarizes the results of the borane donor exchange synthesis. It was found that ammonia displacement of the borane-THF complex gave the best yields and purities, and that this approach was superior to the salt displacement reaction.

<table>
<thead>
<tr>
<th>Reaction Route to MeAB</th>
<th>Solvent & conditions</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt Elimination: MeNHCl + NaBH\text{a}</td>
<td>THF solvent plus additive, Room temp then heat</td>
<td>51% yield</td>
</tr>
<tr>
<td>Donor Exchange: BH\text{a} -THF + MeNH\text{a}</td>
<td>THF solvent, CH\text{a}NH\text{a} added to BH\text{a} -THF, -20°C then room temp</td>
<td>91% yield, mp 55 - 56°C, clean NMR</td>
</tr>
<tr>
<td>BH\text{a}3 -THF + MeNH\text{a}</td>
<td>THF solvent, (CH\text{a}3)NH added to BH\text{a} -THF, -5°C then room temp</td>
<td>88% yield, mp 36 - 38°C, clean NMR</td>
</tr>
</tbody>
</table>
Preparation of liquid MeAB/AB mixtures: Because MeAB is a low melting solid, it was felt that making mixtures of MeAB with high melting AB could result in low melting mixtures leading to potential liquid fuel compositions. To search for such low melting compositions, an array of nine compositions of MeAB in AB ranging from 90% MeAB: 10% AB to 10% MeAB:90% AB were prepared. Compositions in the 70-60% MeAB:30-40% AB mixtures were found to have low melting points of around 36-37°C. Assuming that MeAB can release 2 equivalents of hydrogen, and AB releases 2 to 2.5 equivalents of hydrogen, the low melting MeAB/AB compositions can potentially release 10-11 wt% hydrogen, exceeding the 2010 targets and potentially meeting 2015 hydrogen capacity targets.

Co-synthesis of MeAB/AB mixtures: In the large scale synthesis of a fuel mixture such as MeAB/AB, it may be possible to co-synthesize the mixture rather than independently preparing the two pure components and blending them. This is particularly appropriate given that both MeAB and AB are efficiently prepared using the ammonia–donor exchange reactions described above. Scoping reactions were performed to examine the feasibility of this approach. Using a similar procedure to that developed for the donor exchange reactions of the pure components, methylamine and ammonia (mole ratio 65:35) were added to a THF solution of the THF-borane adduct at low temperature. Warming the mixture to room temperature followed by isolation of the products resulted in a mixture of MeAB/AB that had a few minor impurities as determined by NMR, took the form of an oil at 30°C, and solidified at 25°C. Because handling safety of these materials has yet to be determined, shipment to CHSCoE partners was not completed.

Conclusions and Future Directions

Professor Clint Lane passed away suddenly, shortly after returning from the annual Hydrogen Program Merit Review Meeting. The work that Dr. Lane and his student, Sharon Baker, were performing is crucial to the CHSCoE; therefore, the CHSCoE is currently working through this loss. While there is no way to replace Dr. Lane’s expertise or his valuable contributions to the CHSCoE and to the fields of boron and process chemistry, his important work must be carried on as part of the CHSCoE’s activities. Dr. Lane’s work has laid the groundwork for large scale processes for the preparation of amine borane fuels, including the potential for liquid fuel formulations. While the CHSCoE does not yet have a definite plan as to how to carry on his work, his recent results point the direction that must be followed:

- Optimize the yields and characterize any impurities in the AB and MeAB syntheses.
- Examine the in situ generation of THF-borane as a means to lower the cost of fuel synthesis.
- Continue the search for low melting liquid fuel compositions and evaluate the role of minor impurities on the lowering of the melting point, as well as their influence on hydrogen release and spent fuel regeneration.
- Determine safe handling parameters of these materials, particularly the new liquid fuels compositions, to enable sharing of samples with CHSCoE partners.

FY 2007 Publications/Presentations

Reports

Four Quarterly Reports to DOE.

Presentations