Novel Compression and Fueling Apparatus to Meet Hydrogen Vehicle Range Requirements

Todd Carlson
Future Energy Solutions
Air Products and Chemicals, Inc.
May 25, 2005

Contributors:
David Chalk (Machinery Design)
Nick Pugliese (Fabrication)
Mark Rice (Controls)

Project ID: TV6

This presentation does not contain any proprietary or confidential information
Overview

- **Timeline**
 - Project Start 10/2002
 - Contract 5/2004
 - Project End 2/2006
 - 85% Complete

- **Barriers**
 - High cost of hydrogen compression
 - Cost of hydrogen

- **Budget**
 - Total $690,875
 - DOE Share $345,438
 - APCI Share $345,438
 - 04 Funding $317,606
 - 05 Funding $373,088

- **Collaboration**
 - Tescom
 - Genesys
 - Weh
 - OPW
 - Walther
 - Spir Star
Objectives

- **Primary**
 - Develop a process design for a novel compressor
 - Develop mechanical design for novel compressor
 - Select a test hydraulic fluid
 - Machine/Manufacture Compressor parts & components
 - Assemble prototype system and test
 - Demonstrate operation of the system
 - Final report

- **Secondary**
 - Investigate other fueling components to support 700 barg (10,000 psig) hydrogen fueling
Approach

- Conceptual Design
- Process Design
- Thermodynamic Data
- Fluid Selection and Testing
- Dynamic Modeling
- Component Design, Fabrication, and Testing
 - Machining of compressor parts complete
 - New valves developed for 15,000 psig
 - New relief valves being tested and qualified
 - New pressure switch identified
 - New thermocouple wells designed
- Prototype
 - Skid hazard review
 - Components on order for test skid
- Long Term Testing
 - Site selection and funding
Approach
Design Issues

- **Compressor**
 - Isothermal (~50 Deg F rise)
 - High pressure (~14,000 psig)
 - Single stage
 - Low cost

- **Fueling Station**
 - Lower the delivered cost of hydrogen
 - Composite vessels (ASME approval)
 - Lined steel vessels are $110,000/ft³ at 15000 psig
 - Breakaway and fuel nozzle (Walther, OPW, and Weh)
 - Fueling codes
Safety

- Air Products Hydrogen Experience
 - Over 12,000 fills (75-100/week)
 - 10 fuel stations installed last year (32 total, 12 in construction)
 - Industrial hydrogen (30+ years, 55% merchant market share, 1000 gaseous/500 liquid customers, pipelines, purification/separation, reformers, electrolysis)

- Our fueling systems have undergone rigorous third party independent safety reviews
 - ABS Consulting – Singapore
 - NASA - White Sands, NM
 - KHK/JHPGSL – Kagoshima, Japan
 - International Refinery Services – Singapore
 - Beijing Government – FSR Permitting
 - KGSL – Seoul, Korea
 - UL and Metlabs
Timeline

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Start Date</th>
<th>Qtr 1</th>
<th>Qtr 2</th>
<th>Qtr 3</th>
<th>Qtr 4</th>
<th>Qtr 1</th>
<th>Qtr 2</th>
<th>Qtr 3</th>
<th>Qtr 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Feasibility/System Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 System Pressure Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 Isothermal Compressor Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 Packless Valve Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0 System Design</td>
<td></td>
<td>10/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Flow Lab Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2 Dispenser Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 Isothermal Compressor Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4 Packless Valve Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0 Lab Installation and Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Compressor and Valves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2 Connectors and Flow Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3 Composite Vessels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4 Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5 Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0 Field Installation and Operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1 Penn State Review and Plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2 Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3 Operational Field Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0 Program Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1 Final Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Technical Accomplishments
Novel Compressor – Basic Concept

- **Isothermal**: Gas cooled during compression (50 ºF rise)
- **Single Stage**: Liquid piston permits high pressure ratio by elimination of piston to cylinder clearance and temperature concerns (140:1 compression ratio)
- **Liquid Pump**: Inherently lubricates all dynamic seals
- **Dynamic Gas Seals Eliminated**: No gas seals to atmosphere
- **Issues**: fluid carryover, level control

many typical machinery issues eliminated by liquid piston
Technical Accomplishments
Existing Technology

- **Diaphragm Compressor**
 - Metal diaphragm separates gas from oil
 - 300 deg F temperature rise
 - 20:1 standard compression ratio
 - Up to 350 barg is bolted, higher pressure requires bootstrap

- **Hydraulic Intensifier**
 - Floating piston with rings separates gas from oil
 - 300 deg F temperature rise
 - 8:1 standard compression ratio
 - Smaller cylinder allows higher discharge pressures (long stroke at low RPM)
Technical Accomplishments
Cylinder Pressure and Temperature

~ 50°F temperature rise for 140:1 compression ratio
Technical Accomplishments
Cylinder Pressure and Temperature
Technical Accomplishments
Dynamic Simulation Results

- Identified key operational issues and design parameters:
 - Surface area requirements in heat exchanger and heat transfer coefficients for near isothermal operation
 - Liquid inventory management needs (pressure/flow regulation)

- Quantitative results on potential sources of inefficiency:
 - Hydraulic intensifier friction
 - Circuit DPs
 - Hydrogen solubility in compression fluid
 - Heat transfer limits and design of heat exchanger

- Process sensitivities to the following parameters studied:
 - Initial accumulator gas volume
 - Pump flow
 - Hydraulic intensifier flow
 - Valve flow coefficients

novel H₂ compressor unit is feasible
Technical Accomplishments
Pressure Analysis

- Automotive OEM’s are pursuing 700 barg fueling to achieve US norm of 300 mile range.
- Fast fill (~ 4-6 minutes) is the method with the highest commercial potential.
- Cascade fueling is the most often used method of achieving a low cost, fast fill. This is not possible at 700 barg with steel storage cylinders due to cost.
- To achieve full fills, cascade filling requires a minimum of 25% overpressure to counter vehicle tank heating.
- Fast fill to 700 barg will require cooling of the hydrogen.
- ASME and Air Products requirements for relief valves (set at vessel MAWP) impose a maximum operating pressure of 90% of MAWP.

\[
\frac{700 \text{ Barg} \times 125\%}{90\%} = 972 \text{ Barg MAWP (14100 psig)}
\]

System pressure requirement is 14100 psig MAWP
Technical Accomplishments
Fueling Apparatus

• Air Products has developed hydrogen fueling systems up to 700 barg (10,000 psig).
 – Valves
 • Manual
 • Actuated
 • Pressure Control
 – Flexible Hose
 – Tubing
 – Fittings and Adapters
 – Controller
 – Packaging

Most components available today for 700 barg fueling
Responses to Questions

- What fluid is used for a compressor?
 - Krytox Fluorocarbon Oil
 - Patents are submitted and contract with DOE and DEP are now signed
Future Work

- Assemble and Test.
- Determine overall costs.
- Determine feasibility of future use.
- Long term prototype testing, if warranted.
- Final Report
Interactions/Collaborations

- Air Products and Chemicals, Inc.
 - Future Energy Solutions
 - Advanced Systems Machinery
 - Advanced Controls
 - Dynamic Modeling
 - Corporate Safety
- Tescom
- Spir Star
- Barksdale
- Ashcroft
- Weh
- OPW
- Walther
Questions?
Thank you
tell me more
www.airproducts.com
Publications and Presentations

- May 2003 – DOE Peer Review
- May 2004 – DOE Peer Review
Hydrogen Safety

The most significant hydrogen hazard associated with this project is:

Drawing air into the compressor suction and compressing into the high pressure hydrogen storage vessels. Given the correct conditions, this could result in a high pressure flammable gas mix. Deflagration or detonation of this mixture could result in failure of the vessels.
Hydrogen Safety

Our approach to deal with this hazard is:

We have completed a Level of Protection Analysis that takes all physical and operating conditions into consideration to determine the probability of the event occurring. We also utilize a low pressure switch on the compressor inlet (hard-wired to PLC power). This pressure switch is functionally tested every quarter.