Low-Cost, High-Pressure Hydrogen Generator

Cecelia Cropley
Giner Electrochemical Systems, LLC
May 16, 2006

Project ID# PDP 2

This presentation does not contain any proprietary or confidential information
Overview

Timeline
- Project Start: Jan 2003
- Project End: Dec 2007
- Percent Complete: 60

Budget
- Total Project Budget: $3.026M
 - DOE Share: $1.499M
 - Cost Share: $1.527M
- FY05 Funding
 - DOE: $400K
- FY06 Funding
 - DOE: $350K
- Cost Share Funding to Date: $1.08M

Barriers
- DOE Technical Barriers for Hydrogen Generation by Water Electrolysis
 - Q. Cost- capital cost, O&M
 - R. System Efficiency

Technical Targets
- $600/kW for 10,000 scfd unit
- Stack efficiency = 76% (LHV)
- $2.85/gge H₂ in 2010

Partners
- General Motors
- Center for Technology Commercialization- Public Outreach and Education
Project Objectives

Overall Project

- Develop and demonstrate a low-cost, high-pressure PEM water electrolyzer system
 - Reduce capital costs to meet DOE targets
 - Increase electrolyzer stack efficiency
 - Increase electrolyzer hydrogen discharge pressure
 - reduce amount of mechanical compression required
 - Demonstrate a 3,300 scfd high-pressure electrolyzer operating on a renewable energy source
Advantages of GES PEM Electrolyzer

- PEM electrolyzers have higher efficiency than alkaline systems
 - Electricity is the key cost component in electrolyzer systems
 - Present GES performance is 1.75V at 1200 mA/cm²
 - Stack efficiency = 71% based on LHV
 - With advanced membrane demonstrated 1.71V at 1200 mA/cm²
 - Alkaline systems typically >1.85V at 300-400 mA/cm²
- GES PEM differential pressure technology produces H₂ at high pressure (up to 3000 psig to date) with O₂ production at atmospheric pressure
 - Reduces system cost and complexity
 - Improves safety- eliminates handling of high-pressure O₂
- Cost is benefited by advances in PEM fuel cell technology
Approach

- Incrementally increase stack operating pressure through advanced seal and endplate design
 - 1000 psid in 2002; 2000 psid in 2004
 - Demonstrated sealing to 3000 psid in 2006
- Replace high-cost stack components with lower-cost materials and fabrication methods
- Increase operating current density to reduce cell active area (reduce stack cost) while retaining high efficiency
- Incrementally increase the system operating pressure
- System innovations to replace high-cost, high maintenance components
- Emphasize safety in design and operation
Objectives- Past Year

- Develop Lower-Cost Stack Components
- Decrease Parts Count/Cell
 - Applies to all operating pressures
 - Anode Side Membrane Support Structure (ASMSS)
 - Cell frames
 - Cathode Side Membrane Support Structure (CSMSS)
 - Cell Separator
- Increase Operating Current Density
 - Continued development of an advanced high-efficiency, high-strength membrane
 - Provides efficiency comparable to Nafion 112, but has 10x the strength
 - Operating at higher current density reduces number of cells, thereby decreasing stack cost
Stack Cost Reduction

- Initial stack cost reduction focused on the cathode side membrane support structure (CSMSS)
 - Previous Design was a hand-fabricated stack of expensive screens and shims - expensive raw material and assembly
 - Developed a low-cost single-piece CSMSS
 - Demonstrated in the EP-2 stack demonstrated in 2004

- Presently evaluating methods to further reduce cost of this part
 - Evaluating alternatives to current supplier
 - Developing methods to minimize post-fabrication processing
Stack Cost Reduction Since EP-2

ASMSS

- Consists of 9 metal parts which are individually cut, plated, welded, cut again and assembled
- Previously reported design of an alternate that consists of 4 parts
 - Could be supplied by a vendor as a single complete part
 - Expected to reduce ASMSS cost by 50%; an additional 25% reduction could be realized in high-quantity production
- Evaluating feasibility of using a single-piece part
 - Working with vendors to develop cost-effective method for making part with acceptable tolerances
 - Currently evaluating properties of sample pieces
Thermoplastic Cell Frame

- Conduct fluids into/out of active area
- Aids in pressure containment - highly stressed component
- Presently these parts are molded and machined; machining accounts for 95% of part cost
- GES worked with a Tier 1 automotive component supplier to design new frames and manufacturing methods
 - Evaluated several designs that eliminate machining
 - Test coupons successfully hydrostatically tested to 3000 psig
 - Analysis indicates leaching of contaminant from processing method
 - Continuing to pursue non-contaminating methods

Successful development expected to reduce cell cost by 40%
Cell Separator

- Key component that must be compatible with high-pressure hydrogen on one side and oxygen at high potential on the other
- Previous technology was a very expensive part consisting of two different valve metals
- Evaluating several approaches
 - Treatments to reduce hydrogen embrittlement
 - Methods to bond low-cost materials
Progress in Part Count Reduction

2002

Present Goal (2006)

40 + Parts

16 Parts
Increasing Operating Current Density

- High current density operation reduces stack active area, and therefore stack cost
 - Thin membranes have low resistance, allowing efficient operation at high current densities
 - Drawback is poor mechanical properties, limiting operation to moderate differential pressures
- GES has reduced the thickness of the Nafion membrane used from 10 mils to 7 mils, and has demonstrated performance and life of a 5 mil Nafion membrane in a short stack at 400 psid
 - However, thicker membranes are required at higher differential pressure
 - 5000 psid will require 10 mil standard membrane
- GES is developing an advanced supported membrane structure
 - Excellent mechanical properties- suitable for high differential pressure
 - High proton conductivity- equivalent to 2 mil Nafion membrane
 - Hydrogen and oxygen permeability equivalent to N112
Supported Membrane

- Superior Mechanical Properties
 - No x-y dimensional changes upon wetting/drying or freeze-thaw cycling
 - Much Stronger Resistance to tear propagation
 - Superior to PTFE based supports
 - 10x stronger base properties

- Ease of MEA/Stack configurations
 - Direct catalyst inking onto membranes
 - Possible to bond support structures into bipolar frame to eliminate sealing issues

- Customization of MEA
 - Provide more support at edge regions and/or at ports
Demonstration of Advanced Membrane in 160-cm2 cell

- Developed method for fabricating full-scale MEA
- Demonstrated sealing of membrane in cell
- Demonstrated efficient cell operation
 - Performance superior to Nafion 117 membrane
EP-2 System

- System pressure (hydrogen production) was upgraded from 2000 psig to 3000 psig
- Design capacity
 - 140 scfd hydrogen
 - 25 kW system power
Future Plans

Remainder of FY 2006

- Continue focus on stack cost reduction
 - Develop single-piece ASMSS
 - Reduce fabrication cost of CSMSS
 - Evaluate low-cost cell frame fabrication methods
 - Develop lower-cost, long-life cell separator
 - Demonstrate advanced membrane

- Demonstrate low-cost materials and fabrication methods in a 10-cell stack
Future Plans

FY 2007

- Fabricate 3300 scfd stack and system
- Conduct field-test of system, possibly at NREL
Summary

- GES PEM Electrolyzer has potential to meet DOE cost and performance targets.
- GES has made significant progress in stack cost reduction.
- Further development of a high-strength, high efficiency membrane is recommended:
 - Demonstrate reproducibility and durability
 - Decrease fabrication cost
Response to Reviewers’ Comments

- Relying too much on low-cost electricity to achieve the cost targets
 - Cost of electricity is the major cost component
 - Even at very high efficiency, low-cost electricity is required to achieve the target $2.85/gge H₂
 - DOE target is based on $0.04/kWh
 - Advanced membrane will significantly improve electrolyzer efficiency

- Little collaboration
 - Program is primarily an engineering program
 - GES is collaborating with a number of component vendors and materials suppliers to develop advanced materials and manufacturing methods
Publications and Patents

Critical Assumptions and Issues

- Hydrogen storage pressure for refueling
 - Present program is aimed at H_2 production at 5000 psig
 - DOE target has been increased to 6700 psig
 - Auto manufacturers are evaluating storage at >10,000 psig
 - GES economic studies indicate lowest cost for PEM electrolyzer operating at 1200-1500 psig, with single-stage compressor to reach storage pressure

- Cost of electricity is key variable in electrolyzer economic analysis
 - GES uses $0.035/kWh in our model