Controlled Hydrogen Fleet and Infrastructure Analysis

Keith Wipke, Senior Engineer II
NREL
May 19, 2006

Project ID# TV-12

This presentation does not contain any proprietary or confidential information
Disclaimer and Government License

This work has been authored by Midwest Research Institute (MRI) under Contract No. DE-AC36-99GO10337 with the U.S. Department of Energy (the “DOE”). The United States Government (the “Government”) retains and the publisher, by accepting the work for publication, acknowledges that the Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for Government purposes.

Neither MRI, the DOE, the Government, nor any other agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe any privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the Government or any agency thereof. The views and opinions of the authors and/or presenters expressed herein do not necessarily state or reflect those of MRI, the DOE, the Government, or any agency thereof.
Project Objectives and Targets

• Objectives
 – Validate H₂ FC Vehicles and Infrastructure in Parallel
 – Identify Current Status of Technology and its Evolution
 – Re-Focus H₂ Research and Development
 – Support Industry Commercialization Decision by 2015

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>2009*</th>
<th>2015**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Cell Stack Durability</td>
<td>2000 hours</td>
<td>5000 hours</td>
</tr>
<tr>
<td>Vehicle Range</td>
<td>250+ miles</td>
<td>300+ miles</td>
</tr>
<tr>
<td>Hydrogen Cost at Station</td>
<td>$3/gge</td>
<td>$2-3/gge</td>
</tr>
</tbody>
</table>

* To verify progress toward 2015 targets
** Subsequent projects to validate 2015 targets
Project Overview

Timeline
• Project start: FY03
• Project end: FY09
• ~33% of Task III complete (see timeline slide)

Budget
• NREL FY04 funding: $630K
• NREL FY05 funding: $750K
• NREL FY06 funding: $812K
• Context: Overall DOE project is ~$170M project over 5 years
 – Equal investment by industry

Tech. Val. Barriers
A. Vehicles – lack of controlled & on-road H₂ vehicle and FC system data
B. Storage – technology does not yet provide necessary 300+ mile range
C. Hydrogen Refueling Infrastructure – cost and availability
D. Maintenance and Training Facilities – lack of facilities and trained personnel
E. Codes and Standards – lack of adoption/validation
H. Hydrogen Production from Renewables – need for cost, durability, efficiency data for vehicular application
I. H₂ and Electricity Co-Production – cost and durability

Partners
• See partner slide
Project Timeline

<table>
<thead>
<tr>
<th>FY03</th>
<th>FY04</th>
<th>FY05</th>
<th>FY06</th>
<th>FY07</th>
<th>FY08</th>
<th>FY09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task I</td>
<td>Task II</td>
<td>Task III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Task I – Project Preparation [100% Complete]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Support development of RFP, statement of objectives (Appendix C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Bidder’s meeting in Detroit – launch of RFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Create data analysis plan and presentation for discussion with industry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Task II – Project Launch [100% Complete]**
 - 4 Announcement of successful bidders (4/04)
 - 5 Kick-off meetings and cooperative agreement awards

- **Task III – Data Analysis and Feedback to R&D activities (partial list) [33% Complete]**
 - 6 Preliminary data collection, analysis, and first quarterly assessment report
 - 7 Demonstrate FCVs that achieve 50% higher fuel economy than gasoline vehicles
 - 8 Publication of first “composite data products”
 - 9 Validate demonstration FCV 1000-hour durability
 - 10 Go/No-Go: Decision for purchase of additional vehicles based on perf., durability, cost
 - 11 Introduction of 2nd Generation FC systems into vehicles
 - 12 Validate FCVs with 250-mile range, 2,000 hour durability, and $3.00/gge (based on volume production)

NREL Quarterly Validation Assessment Reports

5/05 5/06
Project Now Well Underway: 1st Year of Data Analyzed

Current Status of Data Reporting to the Hydrogen Secure Data Center at NREL

On-Road Data Received -- Running Totals

Through March, 2006:
24,000 individual vehicle trips
15.6 GB of on-road data

2005 Review

Through March, 2006:
24,000 individual vehicle trips
15.6 GB of on-road data
Industry Partners: Actively Working with 4 Teams with Signed DOE Cooperative Agreements

(1) Fuel cells supplied by Ballard
Teams are Fielding
Four Main Types of Vehicles

Validation also includes FCV Sprinter vans
Representative Hydrogen Refueling Infrastructure Supporting Vehicles

- DTE/BP Power Park, Southfield, MI
- LAX refueling station
- Hydrogen and gasoline station, WA DC
- Chino, CA

Photos: DTE/BP Power Park, Southfield, MI
- Photo: Shell Hydrogen
- Photo: H2CarsBiz
Refueling Stations from All Four Teams Test Vehicle/Infrastructure Performance in Various Climates

- Northern California
- SE Michigan
- Mid-Atlantic
- Southern California
- Florida

Legend:
- ▲ Chevron & Hyundai/Kia
- ▲ DaimlerChrysler & BP
- ▲ Ford & BP
- ▲ General Motors & Shell
- ▲ Other

Additional Planned Stations:
- Northern California: 4
- Southern California: 3
- Florida: 2
- SE Michigan: 2
Project Approach

- Provide facility and staff for securing and analyzing industry sensitive data
 - NREL Hydrogen Secure Data Center (HSDC)
- Perform analysis and simulation using detailed data in HSDC to:
 - Evaluate current status and progress toward DOE vehicle and infrastructure targets
 - Feedback current technical challenges and opportunities into DOE H₂ R&D program
 - Provide analytical feedback to originating companies on their own data (detailed data products)
- Publish/present progress of project to public and stakeholders (composite data products)
Approach: Providing Data Analysis and Results for Both the Public and for the Industry Project Teams

Hydrogen Secure Data Center (HSDC)
- Located at NREL: Strictly Controlled Access
- Detailed Analyses, Data Products, Internal Reports

Composite Data Products
- Pre-agreed upon aggregate data results for public
- No confidential information

Detailed Data Products
- Only shared with company which originated the data

Raw Data, Reports
Approach: Collect Detailed Vehicle and Infrastructure Data for Analysis

<table>
<thead>
<tr>
<th>Key Vehicle Data</th>
<th>Key Infrastructure Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack Durability</td>
<td>Conversion Method</td>
</tr>
<tr>
<td>Fuel Economy (Dyno & On-Road) and Vehicle Range</td>
<td>Production Emissions</td>
</tr>
<tr>
<td>Fuel Cell System Efficiency</td>
<td>Maintenance, Safety Events</td>
</tr>
<tr>
<td>Maintenance, Safety Events</td>
<td>Hydrogen Purity/Impurities</td>
</tr>
<tr>
<td>Top Speed, Accel., Grade</td>
<td>Refueling Events, Rates</td>
</tr>
<tr>
<td>Max Pwr & Time at 40C</td>
<td>(H_2) Production Cost</td>
</tr>
<tr>
<td>Freeze Start Ability (Time, Energy)</td>
<td>Conversion, Compression, Storage, and Dispensing Efficiency</td>
</tr>
<tr>
<td>Continuous Voltage and Current (or Power) from Fuel Cell Stack, Motor/Generator,</td>
<td></td>
</tr>
<tr>
<td>Battery & Key Auxiliaries: (Dyno & On-Road)</td>
<td></td>
</tr>
</tbody>
</table>
Approach for Vehicle Data Analysis: Automated Process from CD/DVD Delivery to Results

Data is delivered to NREL’s Hydrogen Secure Data Center (HSDC) on CD/DVDs

Data protected in HSDC for 5 years after data is developed under EPACT 2005, Sec. 810

On-Road Fuel Economy: All Vehicles

Weighted Average Fuel Economy = 47.6 miles/kg H2

All trip lengths included in calculations

Range Histogram: Vehicle 1

Maximum range b/w refuelings = 175 miles

Operating Time (hrs)

Predicted Voltage (V)

Actual
CurveFit
95%CI:Observation
95%CI:CurveFit

@Current = 50A
@Current = 100A
@Current = 150A
@Current = 200A
@Current = 250A

Vpred = 427.9 - 15.78*log(current) - 0.3370*current

100 hours of data per curve fit
12000 data points per curve fit

Time(oper hrs) = 356

10.0 hours of data per curve fit

12000 data points per curve fit

Current (A)

Voltage (V)
Accomplishment: Analysis Controlled by New NREL-Developed GUI – Fleet Analysis Toolkit (FAT)
Accomplishment: FAT GUI Includes TripView to Further Investigate Individual Trips and Refuelings
Accomplishment: Completion of Four New Quarterly Technology Validation Assessment Reports

- Internal reports document detailed methodology and results (detailed data products)
- Used to help guide DOE H₂ R&D
Accomplishment: Baseline Vehicle Chassis Dynamometer Testing Completed by All Four Teams

- One vehicle per team per geographic region
- 11 vehicles tested using SAE J2572
- Some teams may elect to use test results for EPA certification
Accomplishment: Created First 16 of 26 Composite Data Products

A. Critical Program Metrics:
1. Fuel Cell Durability, Actual vs. DOE Targets, All OEM’s
2. Vehicle Ranges, Actual vs. DOE Targets, All OEM’s
3. H2 Production Cost, Actuals/Projections vs. DOE Targets

B. Composite Performance Tracking:

Vehicles

4. Reliability (FC System & Powertrain, MTEF)
5. Start Times vs. DOE Target
6. Fuel Economy: Dyno, On-Road
7. Normalized Vehicle Fuel Economy
8. Fuel Cell System Efficiency
9. Safety Incidents - Vehicle Operation
10. Weight % Hydrogen
11. Energy Density of Hydrogen Storage
12. Vehicle Hydrogen Tank Cycle Life

Hydrogen Infrastructure

13. H2 Production Efficiency vs. Process
15. H2 Production Cost vs. Process
16. H2 Purity vs. Production Process
17. Hydrogen Impurities - Range for Production Process A
18. Histogram: Refueling Rate
19. Average Maintenance Hours - Scheduled and Unscheduled
20. Safety Incidents - Infrastructure

Highlighted CDPs Have Been Completed and Will Be Presented

C. High Level Program Progress:

Vehicles

21. Range of Actual Ambient Temperatures During Vehicle Operation – All Vehicle Teams
22. Histogram: # Vehicles vs. Operating Hours to Date
23. Histogram: # Vehicles vs. Miles Traveled to Date
24. Cumulative Vehicle Miles Traveled - All Teams
25. Progression of Low to High Pressure On-board H2 Storage

Hydrogen Infrastructure

26. Cumulative Hydrogen Production – All Teams

Composite Data Products are Main Output to Public and Hydrogen Community
Accomplishment: Published Composite Data Products in NHA 2006 Paper and Presentation

CONTROLLED HYDROGEN FLEET AND INFRASTRUCTURE DEMONSTRATION AND VALIDATION PROJECT: PROGRESS UPDATE

K. Wipke, C. Welch, H. Thomas, S. Sprik, S. Gronich, J. Garbok, D. Hooker

Abstract
The U.S. Department of Energy (DOE) initiated the “Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project” through a competitive solicitation process in 2003. The purpose of this project is to conduct an integrated field validation that simultaneously examines the performance of fuel cell vehicles and the supporting hydrogen infrastructure. Insights from the vehicles and infrastructure study will be fed back into DOE’s research and development program to guide and focus future research, making this project a “learning demonstration.” Five teams were selected and four cooperative agreements between DOE and industry partners have been awarded and commenced. These four cooperative agreements will ultimately support more than 130 fuel cell vehicles, which will be validated on-road, as well as more than 25 hydrogen refueling stations. Fifty-nine first-generation vehicles have already entered into service with customers, and several new hydrogen refueling stations have opened, with more vehicles and stations planned. Lessons learned from this project on the interrelationship between the vehicles and the infrastructure will influence ongoing development of codes and standards. The auto industry and the energy companies are strongly committed to this project, and the government’s investment in this project is matched by each industry team.

This DOE industry collaborative project will continue for a total of 5 years, during which multiple generations of technology will be tested. Technical performance of vehicles and infrastructure will be compared against DOE targets at intermediate stages and at project completion. Examples of 2009 DOE validation targets include a 250-mile vehicle range, 2,000 hour durability of fuel cell stacks, and a hydrogen production cost of $3/gge unshifted, when produced in quantity. This paper provides a status update covering the progress of the demonstration and validation project over the last year. This includes the first composite data product to be released from the project, along with a summary of the data inputs and analysis methodology. The composite data products aggregate

The Following 12 Slides are the Public Technical Results: Composite Data Products
(1) One data point for each make/model. Combined City/Hwy fuel economy per DRAFT SAEJ2572.
(2) Adjusted combined City/Hwy fuel economy (0.78 x Hwy, 0.9 x City).
(3) Excludes trips < 1 mile. One data point for on-road fleet average of each make/model.
(4) Calculated from on-road fuel cell stack current or mass flow readings.
Vehicle Range Based on Dyno Results and Usable H₂ Fuel Stored On-Board

Data indicate improved H₂ storage technologies capable of being packaged in a vehicle are necessary to meet range targets.

(1) Calculated from combined City/Hwy fuel economy (dyno test) per DRAFT SAE J2572 and usable fuel on board.

Created: 21-Feb-2006
Strong vehicle safety record indicates very few start-up issues and no fundamental safety problems with the vehicles.

Created 21-Feb-2006
Safety Incidents – Infrastructure

Data indicate a strong infrastructure safety record. Station robustness to external forces and false alarms could be improved.
Vehicle H₂ Storage Technologies Include 350 bar, 700 bar, and Liquid H₂

First generation vehicle fleet still being deployed. Fleet is now largest H₂ FC vehicle fleet in the world.
Compressed and liquid H₂ tanks meet durability and short term weight %, but don’t meet long-term weight % or volumetric capacity targets for vehicles.
Hydrogen Purity Sampled from Stations Meets Target Majority of the Time

Hydrogen Purity Sampled from Stations

(1) Includes sampling from both electrolysis and reforming
Hydrogen Impurities Sampled from All Stations – Includes On-Site Reformation, Electrolysis, and Delivered H₂

- Particulates
- (N₂ + He + Ar)
- NH₃
- Total S Compounds*
- CO
- CO₂
- O₂
- Total HC
- H₂O

H₂ Impurities

Range of Reported Data
ISO FDTS 14687-2 Max
Reported Detection Limit

- Improved sampling technologies are necessary to improve low-concentration sensitivities

*NIncludes SO₂, COS, and H₂S.

Created: 23-Feb-2006
Actual Vehicle Refueling Rates: Measured by Stations or by Vehicles

Histogram of Vehicle Refueling Rates

Future analyses could compare impact of communication and non-communication fills on fill rates and completeness of fill.

Created: 21-Feb-2006
Fuel cell vehicles are currently able to operate in extreme temperature conditions. Future tests will determine ability to start in cold temperatures.
Vehicle Operating Hours and Miles Traveled Distribution

Vehicle Hours: All OEM's Combined through Q4 2005

Total Vehicle Hours = 7,831

Vehicle Miles: All OEM's Combined through Q4 2005

Total Vehicle Miles Traveled = 196,405

Data reflect youthful nature of current fleet
Rate of mileage accumulation increasing as initial fleets approach full Gen 1 vehicle deployment

Current deployment of new H₂ refueling stations for this project is about 20% complete
Accomplishments: Automated Analysis Updated for Analyzing Stack Current/Voltage Degradation

Stack Degradation Analysis: Vehicle16-Stack2

2400 data points per curve fit
Time (stack oper hrs) = 164

Approach to On-Road Voltage Degradation Analysis: Polarization Curve Fitting, Piecewise in Time

Not Real Data

Predicted (Curve Fit) Voltage vs. time for Vehicle16-Stack2
Voltage Degradation Analysis: Individual-Stack Methodology

Voltage vs. Operating Hours at 300A: Vehicle16-Stack2

- Nominal V @ zero hrs = 207V
- Threshold for 10% drop = 186V
- 13 mV/hr
- 95.1%

Technique Makes Performance Projection Based on All Available FC Data; Includes Reporting Confidence in Results

Created: 28-Feb-2006
Voltage Degradation Analysis:
Multiple-Stack-Average Methodology

Voltage vs. Operating Hours at 300A: All Stacks

- Nominal V @ zero hrs = 206V
- Threshold for 10% drop = 185V
- 11 mV/hr

Vehicle15-Stack1
Vehicle16-Stack2
Vehicle17-Stack1

Voltage Degradation Analysis Technique Key to Evaluating Data Relative to DOE FC Durability Target in Fall 2006
Interactions and Collaborations

- Provided feedback to industry teams on data submissions to ensure maximum benefit of data being reported while minimizing extra effort by industry
- Performed industry site visits to participate in vehicle chassis dynamometer testing
- Compiled detailed data products for two of the four industry teams and made site visits to present and discuss the results
 - Similar meetings will be held with remaining two teams in summer/fall 2006
- Participated in annual project review meetings with all four teams (March 2006)
- Interacted with relevant codes and standards teams
- Participated in CAFCP DemoNet sharing meetings
- Presented technical results to H₂ community as a whole at NHA meeting
 - good interaction in Q&A and subsequent discussions
- Helped other countries/states establish data collection protocols for their projects based on our experience
Future Work

• **Remainder of FY06:**
 – Analyze first 1.5 years’ data (through 8/06)
 • Create remaining 10 Composite Data Products (CDPs)
 • Update existing 16 CDPs with latest results/status
 • Develop new CDPs based on suggestions from industry teams and get buy-in from all teams
 • Prepare results for publication at EVS-22 and 2006 Fuel Cell Seminar
 – Support September 2006 DOE MYPP and Joule milestones to evaluate current status of FCV technology relative to
 • 1000 hour intermediate durability target
 • Vehicle refueling time of 5 minutes or less
 – Support DOE Go/No-Go Decision on purchasing 2nd generation FCVs in 2007 based on progress toward targets above (9/06)
 – Present detailed data products to two remaining industry teams
 – Write quarterly validation assessment reports (5/06, 8/06)

• **FY07 and beyond:**
 – Semi-annually (spring/fall) compare technical progress to program objectives and targets
 • Provide public outputs through publication at conferences
 – Actively feed findings from project back into HFCIT program R&D activities to maintain project as a “learning demonstration”
Summary

• First year of the 5-year project completed
 – 59 vehicles now in fleet operation
 – Several new refueling stations opened
 – No major safety problems encountered

• Project has identified current technical status relative to program targets
 – Will track improvements from 2nd generation stacks/vehicles introduced mid-way through project

• Future public results will include:
 – FC durability, reliability, efficiency, and start-up times
 – H₂ production cost, efficiency, and maintenance
Questions and Discussion

Contact: Keith Wipke, National Renewable Energy Lab
303.275.4451 keith_wipke@nrel.gov
Responses to Previous Year (FY05) Reviewers’ Comments

• Q: “Technical Accomplishments:…for a project starting in 2003 results seem too modest”
 – FY2003-2005 built the foundation of this project (solicitation, data templates, HSDC, agreement on blank CDPs)
 – Sufficient quantity of data for analysis/publication only began to be available in spring 2005 (see slide 6, reproduced at right)
 – In FY2006 the accomplishments were more visible/public

• Q: “Lack of clarity of how the HSDC assures a meaningful data sharing with stakeholders”
 – Efforts made to clarify the data sharing in this presentation
 – Composite Data Products shared with H₂ community, public, decision makers
 – Detailed Data Products shared with DOE (within the HSDC) and with the company which originated the raw data

• Q: “Go/no-go milestone criteria must be quantified”
 – This is the first year for a go/no-go decision (9/06)
 – 2006 targets are clear; status will measured against targets
 – Working with NREL Systems Integration office to facilitate the process and establish formal criteria for decision
Publications and Presentations
(Since FY05 Review)

- Welch, C., Wipke, K., Thomas, H., Sprik, S., “DOE’s Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Quarterly Validation Assessment Reports,” (HSDC internal documents)
- Welch, C., “Composite Data Products for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project,” updated January 2006. (NREL document)
Critical Assumptions and Issues

• Assumption: Linear Voltage Drop for Voltage Degradation Prediction
 – Linear degradation currently assumed for robustness of curve fit on the relatively short data set received to-date (i.e., using a non-linear curve at this point would provide unreliable predictions)
 – Proposed solution: As more data is received, non-linear fits may be used if the voltage data appears to have a non-linear behavior (it might flatten out or accelerate its degradation, for example)

• Issue: Timing of regularly reported data for critical September 2006 milestones and go/no-go decision.
 – DOE Cooperative Agreement data minimum reporting frequency is quarterly (some companies provide monthly)
 – Data must be submitted to HSDC 1-month after conclusion of previous quarter (eg. by end of October for FY06Q4)
 – If no special actions are taken, this would result in data from April-June 2006 (reported at end of July) to be used for Sept. 2006 milestone status
 – Proposed solution: we will be requesting an early delivery of on-road data covering July-August 2006 so that we have 2 more months of data to evaluate the technology status for the milestone
Project Safety

• Safety an important part of Controlled Fleet & Infrastructure project Cooperative Agreements.
 – NREL’s role in this project is analytical, so typical office environment safety measures are being followed.
 – Industry partners have responsibility for ensuring the safety of their hydrogen vehicles and refueling infrastructure.

• Industry includes the following aspects in each of their projects:
 – Failure modes and effects analysis (FMEA) on the project
 – Safety assessment
 – Risk mitigation plan
 – Measuring and monitoring safety performance
 – Communication plan, including reportable accidents, management response, and independent reviews

• All projects are reporting safety incidents on both vehicles and infrastructure
 – Current safety record presented at NHA as part of Composite Data Products (and in this presentation)
 – Periodic presentations made before Safety Review Panel
 – Any unresolved safety concerns will be brought before Panel