“Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications”

Mr. Dan Hennessy
DELPHI
June 8, 2010

Sponsor: U.S. DOE – Hydrogen, Fuel Cells and Infrastructure Technologies

DOE Technical Development Manager: Dimitrios Papageorgopoulos
DOE Project Manager: David Peterson, Ph.D.
Partners: PACCAR, Volvo Trucks North America (VTNA), & Electricore

This work is supporting in part by the U.S. DOE under Cooperative Agreement DE-FC36-04GO14319

Project ID: FC062

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Delphi Corporation Fuel Cells and Reformers Product Team

DE-FC36-04GO14319

Page 2

Agenda

• Overview
• Objectives
• Milestones
• Approach
• Technical Accomplishments and Progress
• Future Work
• Summary
Overview

Timeline

- September 2004
- April 2010
 (Project was on 18 month hold from 2006-2007)
- 100% Complete

Barriers

- Barriers addressed:
 - Sulfur Remediation
 - Reformer Operation
 - Stack Sensitivity
 - Carbon Issues
 - Catalyst plugging
 - Combustion Start plugging
 - System Pre-combustion
 - System Electrical Integration

Budget

- Total project funding
 - DOE - $3,000,000
 - Delphi - $1,750,000
- $ 981,591 received in CY09
- $ 79,384 planned for CY10

Partners

- Paccar and Volvo Truck
- Electricore Inc.
Heavy Duty Truck represents Delphi’s target initial development & application
Relevance - Heavy Duty Truck Market Idling Time

Fuel and Other Cost Savings are key market drivers

- Engine Shut-Down
- Fuel-Fired Heaters
- Single Climate
- Dual Climate
- Shore Power
- Engine Shut-Down

- 50 hrs/yr
- 75 hrs/yr
- 100 hrs/yr
- 200 hrs/yr
- 300 hrs/yr
- 1,456 hrs/yr
- 33,001 +

APUs
Fuel-Fired Heaters Single Climate Engine Shut-Down
OEM load profiles identify potential power requirements of 2.5kW and 4.0kW respectively.
Complete a 48-month contract with the DOE EERE:

1. Develop APU system requirements and concepts with major truck OEMs input

2. Design, develop and test the needed subsystems for the approved concept
 1. Verification testing of brass-board APU system
 2. Form and packaging design
 3. Review Phase 2 system specification

3. Build and demonstrate a diesel fueled truck APU system

Meeting these objectives will dramatically increase both the technical and commercial viability of fuel cell APU technology.
Approach - Milestones

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Milestone and Go/No-Go Decisions</th>
<th>Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 2008</td>
<td>Sub-Milestone Review #2: This milestone focused on the APU design and layout; and Developing the subsystem requirements document and development plan.</td>
<td>100%</td>
</tr>
<tr>
<td>Sep. 2008</td>
<td>Sub-Milestone Review #3: This milestone focused on the SOFC APU hardware design and build; Subsystem test fixture hardware development.</td>
<td>100%</td>
</tr>
<tr>
<td>April 2009</td>
<td>Phase 2: Critical Milestone #3 Hardware Design & Development This milestone focused on completion of the SOFC APU hardware build and procurement; Initiation of subsystem hardware testing and design iterations.</td>
<td>100%</td>
</tr>
<tr>
<td>August 2009</td>
<td>Phase 2 Milestone #4 System & Subsystem Design Progress This milestone includes subsystem testing and controls development; Initial SOFC APU system brass board integration and design iteration.</td>
<td>100%</td>
</tr>
</tbody>
</table>
Phase 1: OEM input Collection

- Delphi works with PACCAR and VTNA to understand the APU demands from the OEM point of view
- Information has been collected and is compiled into Delphi Requirements

Phase 2: Design/Build/Development

- 2008 Phase 2 effort is design and component verification period
- Late Phase 2 work will include a brass-board system build and test (2009)
- OEM involvement will be reduced until Phase 3

Phase 3: System Integration & Test

- In 2010, system development will use OEM input for test planning
- Conduct bench top testing
- Add in “real-world” profiles from the changing APU marketplace
Accomplishments

- 1.4kW Net Peak Load
- 18 ULSD Starts
- 7 Full Thermal Cycles on ULSD
- 18% System Efficiency Demonstrated
- System Noise Benchmark
- Unit tested on Natural Frequency Sine Sweep for Vibration Characterization
- Achieved Better Stack Performance Correlation to Stack Lab Data
Technical Accomplishments and Progress

Fuel Reformer Development

- The Next Generation Recycle Based Endothermic Reformer was successfully implemented in the Diesel APU
Major Design Efforts in Diesel APU Development

- Next Generation Stack Design with increase active area
- Enhanced Thermal Energy Management Controls
- Endothermic Reformer Integration
- Integrated Reformate Desulfurizer with Serviceability Enhancements
- Next Generation 12v Blower Design
- Multi-function Heat Exchanger
- Simplified Integrated Component Manifold
Collaborations

Delphi has teamed with OEM’s PACCAR Incorporated and Volvo Trucks North America (VTNA) to define system level requirements for a Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for the commercial trucking industry. As well as Electricore Inc, to help with the overall program management.

Volvo Trucks North America (VTNA), Greensboro, NC

PACCAR, Mt. Vernon, WA

Electricore Inc, Valencia, CA
Past / Future Work

2009

- Finish Subsystem Testing and Development Iterations
- Conduct 24 Month Critical Decision Milestone Review (April 2009)
- Complete System Module Testing and Development
- Phase 2 complete – Conduct Milestone Review (August 2009)
- Demo Test, 24 hour truck user profile using battery interface and vehicle simulation

2010

- Phase 3 completed (build and demonstrate a diesel fueled truck APU system)
- Close out project
Summary

- **Primary Market Drivers**
 - Anti-Idling Legislation
 - Emissions Legislation
 - Increasing Heavy Duty Truck Cab Electrical Loads
 - Transportation Fuel Cost
- **Completed Component Build and Testing of SOFC APU subsystems**
- **Completed Bench Top – Brass Board Demonstration**
- **Met both Program Timing and Budget**
- **Delphi is Committed to Introducing SOFC Diesel Technology in Full Scale Production for Heavy Duty Truck Applications**