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LANL Project Overview

Timeline Barriers
* Project Start Date:FY07 * Barriers Addressed
* Project End Date: FY0S8 * Feedstock Cost and
* Percent Complete: 100% Availability

* Capital Cost and Efficiency of

Biomass Gasification/Pyrolysis
Budget Technology
*Project End Date: FY2008

* Funding:
*2008: S300K

«2009: SOK* Partners
*2010: SOK * None

P *EERE Hydrogen Production and Delivery Budget Zeroed Out
)
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LANL Project Objectives

Project Objective

Develop novel low temperature chemical routes and catalysts to
produce hydrogen/syngas from lignocellulosic feedstocks
Target: By 2012, reduce the cost of hydrogen produced from biomass gasification to

$1.60/gge at the plant gate (<$3.30/gge delivered). By 2017, reduce the cost of hydrogen
produced from biomass gasification to $1.10/gge at the plant gate ($2.10/gge delivered).

The most abundant constituent of biomass is lignocellulosic (~¥80%). Discovering
new chemistries and catalysts that can convert lignocellulosic into
hydrogen/syngas will be critical if biomass is to be used as a feedstock for
hydrogen or other alternative fuels.

Lignocellulosic depolymerization/decomposition is the most process intensive

(and most challenging) constituent of biomass to convert to hydrogen/syngas
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LANL Project Approach

In general terms, LANL is in search of novel hydrogen/syngas production routes from
lignocellulosics. Two approaches will be explored:

» Catalytic solubilization of lignocellulosics to generate a sugar feedstock stream for downstream
APR, and

» Solubilization of lignocellulosics followed by APRxn of oligomeric, soluble cellulose.

LANL will conduct screening experiments for evidence of direct aqueous-phase low-
temperature reforming of lignocellulosics to hydrogen/syngas through the use of catalysts designed to
cleave carbon-carbon bonds of the cellulose backbone. Tandem catalysis approaches, where two
catalysts or processes are linked together in a single reaction vessel, will be explored to demonstrate
“one-pot” cellulose solubilization followed by aqueous phase catalytic reforming to generate hydrogen.
This is important in that if catalysts can be found that will generate hydrogen directly from soluble
cellulose oligomers, this provides a ‘one-pot’ approach and offers increased utilization of residual
biomass, increased efficiency and the potential for cost reductions both in feedstock and in capital
equipment. LANL's approach to producing hydrogen from lignocellulosics (i.e., middle and bottom routes)
is represented by the chemical routes shown in Figure 1 (next slide).
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LANL Project Approach (cont’d, Figure 1)

Carbohydrates
(soluble)

Lignin
(insoluble)

Ethanol
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HO oH

Bio-Syngas
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Cellulose : )
— (insoluble) —  Solution —  Solution
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Solution Solution

Figure 1. A rudimentary diagram showing LANL's approach to producing bio-syngas (i.e, hydrogen and carbon
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LANL Technical Accomplishments and Progress

Accomplishments for FY2007-2008

« Demonstrated heterogeneous catalyzed hydrolysis of cellobiose to
glucose

 Demonstrated the conversion of cellobiose to syngas [albeit at low
conversions (~5%)]

Cellulose

« Demonstrated catalytically enhanced decarboxylation of lignin

* Performed baseline characterization studies on model compounds
(i.e., lignin and cellobiose)

Lignin

 Demonstrated low temperature catalyzed gasification of lignin

/\
AN
» Los Alamos E = The Institute

AAAAAAAAAAAAAAAAAA — for Hydrogen
— and Fuel Cell
= Research

6 UNCLASSIFIED



LANL Overview of Scoping Experiments Performed

in FY07-08

* Flow reactor system for liquid conversion (bench-scale)
» Batch reactors for liquid/solid conversion (bench-scale)

* Scoping experimental results
— Liquid phase conversion
* glucose, cellobiose
— Solid phase mass conversion
* lignin, pine
— Residual solids analysis
* TGA (thermal gravimetric analysis)
* NMR
* FTIR (molecular vibrational frequencies)
— Product analysis
* LC (liquid chromatograph)
* gas analysis

AAAAAAAAAAAAAAAAAA
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Conversion of Liquid Phase Oligomeric Cellulose

» Heterogeneous catalytic conversion of soluble phase
— Glucose and Cellobiose to vapor phase products
» Homogeneous catalytic conversion of model cellulose
— Cellobiose as model compound to demonstrate solubization
» Operation
— Flow reactor
« Well defined conditions (control of T, P, flows)
 (Gas analysis
— Batch reactors - closed system
 Reactants loaded, put in oven
— T=100-275°C; 4 -18 hrs
 Post analysis
— Catalysts
« Base metals, noble metals with Lewis acid supports (Al,O,, zeolites)
* Ln Triflates, perfluorosulphonic acid as homogeneous Lewis acids
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Analytical Tools Employed for Biomass Research

Additional Analytical Tools
* Liquid NMR

* Solid-state NMR

* Solid-state DRIFTS

Additional Reactors
*Multi-well batch reactors for rapid screening

» Los Alamos
NATIONAL LABORATORY
EST.1943

Multi-phase flow reactor

+ T=20-1000°C
* P =1-60 atm

Gas Chromatograph (GC)
* Gas analyses

Liquid Chromatograph (LC)
* Liquid analyses
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Analytical Tools Employed for Biomass Research

[ I

Gas Chromatogram (GC)
EGA Capabilities \\,
» Measure mass changes as function - :

|[UTOONA00 000000000 000U0TaND Qua0inaoan

of temperature Mass Spectrometer (MS) z c

» Correlate mass changes with
evolved gas

> |dentify evolved gases with IR, MS,
and GC

EGA system facilitates a deeper Thermal Gravimetric
understanding of the reaction Gas Phase Infrared Analyzer (TGA)
Spectrometer (IR)

rates and chemistry

Evolved Gas Analyzer (EGA) Setup

Our suite of analytical tools allow us to gain insight into the fundamental processes of biomass
pretreatment and hydrogen production from biomass, thus allowing for tailor-made, energy efficient,
cost-effective processes for biomass utilization
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Aqueous Phase Oligomeric-Cellulose Reforming

Reactant; Glucose

Reactant: Cellobiose
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Catalyzed Hydrolysis of Cellobiose to Glucose

SoinWorks 25

Lewis acid catalysis performs
hydrolysis of cellulose to glucose

—
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Solid Phase Conversion of Lignin
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TGA of Lignin Residue After Various Treatments
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TGA and Evolved Gas Analysis: Lignin Treated with Yb

Triflate

Observed changes in lignin DRIFTS
spectrum after various pretreatments
chemistry is occurring
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TGA and Evolved Gas Analysis: Lignin Treated with Yb

Triflate

Observed changes in SS-NMR spectrum N
after various pretreatments |
chemistry is occurring
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LANL Project Summary

[ I

» Conversion of cellobiose to glucose is feasible, but rates currently too low
« Lignin hydrophobicity is a critical challenge for APRxn processes
* Recent results of low temperature catalyzed pyrolysis of lignin shows potential
» Mechanism of the low temperature catalyzed pyrolysis of lignin currently unknown
* Heterogeneous catalysis of glucose and cellobiose
> Relatively high conversions during batch reaction (~60 — 90%)
» Major products appear to be gas phase for heterogeneous catalysis
« Homogeneous catalysis of cellobiose hydrolysis to glucose without significant
decomposition and/or caramelization
» Aqueous cellulose suspension marginally hydrolyzed to free glucose
» Solid conversion of Lignin & Pine increased by Lewis Acid catalysis
» (as phase products tend to syngas rather than alkanes
» Minimal structural change of remaining Lignin (TGA, NMR, DRIFTS)
—Some change in vibrational structure with La Triflate
> Lignin/Gd Triflate demonstrates different decomposition mechanism
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Obstacles to Lignocellulosic Conversion

I

» Conversion of solubilized hydrocarbons to vapor phase
« Conversion of model compounds simulating solubilization
« Unknown reactivity as a function of lignin pretreatment
* Lignin Solubilization
— Interactions with catalysts limited
— Hydrophobicity
— Steric hindrance
* Conversion chemistry
— Reaction mechanisms not understood
* Innovation in chemistry and catalysis
* Innovation in reactor design and reaction engineering
» Current approaches use highly corrosive bases (>10 molar) requiring costly
materials of construction
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LANL Future Work (FY10/11)

» Continue screening for novel low-temperature biomass gasification catalysts

* Explore conversion chemistry of oligomeric cellulose in phase transfer media

* Explore lignin solubilization and catalytic conversion chemistry of lignin in phase

transfer media (PRIMARY FOCUS)
» Obstacles addressed:

» Lignin Solubilization

— Interactions with catalysts limited

— Hydrophobicity

— Steric hinderance
* Conversion chemistry

— Reaction mechanisms not understood
* Innovation in chemistry and catalysis
* Innovation in reactor design and reaction engineering
« Eliminate highly corrosive solvents and/or reactants
* Reduce process cost
* Increase process efficiency

» Los Alamos

NATIONAL LABORATORY
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LANL Future Work: Envisioned Process

. ] . . i Biosyn Gas
| o RawBlomass Innovation in reactor design and reaction
> Biomass Digestion Tank: (R engineering

Complete dissolution of raw % Liquid Bifuels
biomass \%ﬁ/

A us Phase Reforming to:
> Non-Aqueous Phase Reactor: Soluble T o i Bofuels

b. Biosyn Gas

biomass is cracked into lower molecular weight,
water-soluble species

Non-Aqueous Phase
Catalytic Lignin Cracking/
Depolymerization

» Aqueous Phase Reactor: Water-soluble, lower
molecular weight species react in aqueous phase

producing biosyn gas or liquid biofuels Biomass Digestion Low-Temperature Phase-

Tank Transfer Reactor

* Requirements for process viability

1. Anon-corrosive, cheap solvent required to dissolve/digest raw lignin, making lignin tractable
[Lignin Solublization, Reduce process cost |

2. Anactive, durable, cheap water-insoluble catalyst required for cracking lignin into water-soluble oligomers
[Innovation in chemistry and catalysis, Innovation in reactor design and reaction engineering, & Increase process efficiency]

3.  Reaction chemistries and mechanisms must be understood to optimize process viability and reduce cost
[Innovation in chemistry and catalysis , Innovation in reactor design and reaction engineering, & Increase process efficiency]
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LANL Future Work: Biomass Digestion Tank Chemistry

» Biomass digestion tank

+  Lignocellulosics are cross-linked by extensive intra-

and inter-chain hydrogen bonds

*  Solvents that can break up the hydrogen bond
network are known to solubilize lignocellulosics

* lonic liquids are known to have the ability to
solubilize lignocellulosics in this way

» LANL has demonstrated experimentally
the dissolution of lignin, keratin, cellulose,
and pine dust in various non-aqueous
media

» Literature precedents

» Los Alamos
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Hydrophobic Biomass Solid Hydrophobic Biomass Solution

,,,,, HO_ OH- o HO_ OH Jo —Hm o
: Lon T !
M %\}}7 H"K,H%m _ne ,
HO “OH g g 5
HO R oo ‘ Oy W‘J"

Wy on0 __,.»HO oH
0 0%0 ! i
- 0%;?1? A2 \3?3 Non-Aqueous
g HT) Olim i _Ho, oM Solvent %D \
Q 0 o oo 0'Ho: oH
i %WM Her --O
ST 2N ﬂ
OH 0 o

Cellulose film containing entrapped laccase (2.78% w/w) formed
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*M. Turner, et al Biomacromolecules. Vol: 5, 1379-1384 (2004)
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LANL Future Work: Biomass Digestion Tank Chemistry

L 0

» Biomass digestion tank

» LANL has demonstrated experimentally the dissolution of lignin, keratin, cellulose, and pine dust in various non-

aqueous media
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IR Spectra of dissolved
keratin in PTM

» Liquid phase IR capable of detecting and quantifying extents of dissolution of

keratin, lignin, and cellulose

v" We will also employ this technique to track the cracking of lignin and
cellulose into lower MW oligomers
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LANL Future Work: LT Phase Transtfer Chemistry

L

» LT Phase Transfer Reactor (LT-PTR) =

«  PTM catalyst in presence of trace water B
partially hydrolyses cellulose o
. M DI Nonhqueous Fhase
«  Produces water-soluble lower MW oligomers _ . R
of cellulose and lignin = i
Biomass Digesgion Low-Temperature Phases
I'ay Transfer Reactor |
»  Water-immiscible ILs
*  Known and demonstrated at LANL Low Molecular-Weight, Water
soluble Lignocellulosic Oligomers
PTM Phase 1 - o 0
Hydrophobic Biomass Solution )@"AH (Lo il .
PTM Phase 2 "o CH ol Nl o O oiy
Non-Aqueous nx-
PTM Phase 3 S % u Phase Catalyst '
PTM Phase 4 ’ = oo %o LN O on
. . . . +y HOHO OH
Quaternary PTM immiscible mixture :

»  Known and demonstrated at LANL immiscible for greater
e Water phase than seven months

» Biphasic IL-metal cation/water systems 5/ PTM phase Phases have remained
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LANL Future Work: LT Phase Transter Chemistry

» LT Phase Transfer Reactor (LT-PTR)

»  Cellulose and lignin oligomers converted

to biosyn gas or other engineered
products

b. Blosyn Gas.
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Low-Temperature Phase-
Transfer Reactor

»  Catalytic hydrolysis of cellulose
*  Demonstrated in FY2007-2008 research
funded by Hydrogen Production
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LANL LDRD-funded research* has demonstrated catalytic selective
oxidation at the B O-4 linkages of a series of model compounds that
generate low molecular weight phenols, benzoic acids, aldehydes,
among others

*S.K. Hanson, et al J. Am. Chem. Soc. 131, 428, (2009)
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A prim:ry building unit of lignin

Models used to explore reactivity
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LANL Future Work: Cost Estimates

» Cost Estimat

es using Phase Transfer Media (PTM)

Catalyst assumptions: Basis:SMR Plant

* Mass is equal to SMR plant « H, Production capacity = 2.8 x 105 kg H,/day
» Equivalent lifetimes as SMR catalyst « Catalyst volume = 20.5 m3

» Ptloading = 0.5% « Catalyst mass = 1.9 x 10* kg

Sizing assumptions:

« PTM mass/volume based on a solubility of Catalyst and PTM Costs
0.5 9 piomass/IpTM * Raw Pt catalyst cost = $5.5M2
* Equivalent lifetimes as SMR catalyst « Assumed catalyst cost = $19M
« Reactor residence time= 10 min « Phase transfer media (@ $45°kg) = $0.32M

« Catalyst lifetime = 5 yrs

Catalyst cost includes:

a Pt catalyst loading 0.5%, Stock Price = $55/g
b PTM quoted price

* Precious metal recycling cost

* 10% Pt loss
* Interest

A
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NATIONAL LABORATORY

MAXIMUM COST CONTRIBUTION OF PTM AND CATALYST
$ (Solvent and Catalyst) / kg H,Produced =0.02-0.04 8 / kg H,

Costs reflect worst case scenario

Note: assumed catalyst cost is extremely high compared to current industrial prices; Proposed
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LANL Future Work: LT Phase Transter Chemistry

¢ Issues to be resolved
» Individual steps known independently, but not in one system — need to demonstrate
> If APR of short-chain cellulose oligomers is slow, then we will focus on cracking
lignocellulosics all the way to glucose

+» Advantages/Uniqueness of LANL Project
» One pot reactor capable of solubilizing and catalyzing both lignin and cellulose
* Phase transfer catalysis
» Water soluble fractions fed into APR process

» Extremely flexible process capable of producing various chemical feedstocks for further

APR processing

» Maximum cost contributions of PTM and catalyst are on the order of $0.02-0.04 per kg of

H, produced
» Reactor and plumbing materials can be carbon steel

A

)
» Los Alamos
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